Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Cell Rep ; 43(1): 113642, 2024 01 23.
Article En | MEDLINE | ID: mdl-38175756

The tactics used by animal pathogens to combat host immunity are largely unclear. Here, we report the depiction of the virulence-required effector Tge1 deployed by the entomopathogen Metarhizium robertsii to suppress Drosophila antifungal immunity. Tge1 can target both GNBP3 and GNBP-like 3 (GL3), and the latter can bind to ß-glucans like GNBP3, whereas the glucan binding by both receptors can be attenuated by Tge1. As opposed to the surveillance GNBP3, GL3 is inducible in Drosophila depending on the Toll pathway via a positive feedback loop mechanism. Losses of GNBP3 and GL3 genes result in the deregulations of protease cascade, Spätzle maturation, and antimicrobial gene expressions in Drosophila upon fungal challenges. Fly survival assays confirm that GL3 plays a more essential role than GNBP3 in combating fungal infections. In addition to evidencing the gene-for-gene interactions between fungi and insects, our data advance insights into Drosophila antifungal immunity.


Drosophila Proteins , Parasites , beta-Glucans , Animals , Drosophila/metabolism , Antifungal Agents/pharmacology , beta-Glucans/pharmacology , beta-Glucans/metabolism , Parasites/metabolism , Drosophila Proteins/metabolism , Carrier Proteins/metabolism
2.
Trends Microbiol ; 32(3): 302-316, 2024 03.
Article En | MEDLINE | ID: mdl-37778923

Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.


Beauveria , Metarhizium , Mycoses , Animals , Insecta/microbiology , Metarhizium/genetics , Metarhizium/metabolism , Beauveria/genetics , Host Specificity , Fungal Proteins/genetics , Fungal Proteins/metabolism
3.
Curr Biol ; 33(2): 276-286.e5, 2023 01 23.
Article En | MEDLINE | ID: mdl-36423638

In addition to innate immunity in a physiological context, insects have evolved behavioral defenses against parasite attacks. Here, we report that Drosophila can sense the CFEM (common in fungal extracellular membrane) protein Mcdc9, which acts as a negative virulence factor of the entomopathogenic fungus Metarhizium robertsii. The individual deletions of 18 CFEM genes in Metarhizium followed by fly infection identified three null mutants that could kill the flies more quickly than the wild-type strain, among which Mcdc9 can coat fungal spores and interact with the fly chemosensory protein CheA75a. The deletion of Mcdc9 in the fungus or the knockdown of CheA75a in flies had a similar effect, in which a greater number of fungal spores were left on flies than on the respective controls after topical infection. Thus, similar to the accelerated death of the wild-type flies treated with ΔMcdc9, the CheA75aRNAi flies succumbed more quickly than the control insects topically challenged with the wild-type strain. The CheA75a gene is highly transcribed in fly legs and wings, and positive electrophysiological responses were evidenced in tarsal sensilla after stimulation with the Mcdc9 protein. The results imply that this CFEM protein could be sensed as a contact elicitor inducing the hygienic behavior of flies against fungal parasitic infection, which reveals a previously unsuspected mechanism of fungus-insect interactions.


Metarhizium , Parasites , Parasitic Diseases , Animals , Parasites/metabolism , Membrane Proteins/genetics , Insecta , Spores, Fungal/genetics , Spores, Fungal/metabolism , Fungal Proteins/metabolism , Drosophila/metabolism , Metarhizium/genetics
4.
Sci China Life Sci ; 66(5): 1119-1133, 2023 05.
Article En | MEDLINE | ID: mdl-36449213

The ascomycete insect pathogenic fungi such as Metarhizium species have been demonstrated with the abilities to form the rhizosphere or endophytic relationships with different plants for nutrient exchanges. In this study, after the evident infeasibility of bacterial disease development in the boxed sterile soils, we established a hydroponic system for the gnotobiotic growth of Arabidopsis thaliana with the wild-type and transgenic strain of Metarhizium robertsii. The transgenic fungus could produce a high amount of pipecolic acid (PIP), a pivotal plant-immune-stimulating metabolite. Fungal inoculation experiments showed that M. robertsii could form a non-selective rhizosphere relationship with Arabidopsis. Similar to the PIP uptake by plants after exogenous application, PIP level increased in Col-0 and could be detected in the PIP-non-producing Arabidopsis mutant (ald1) after fungal inoculations, indicating that plants can absorb the PIP produced by fungi. The transgenic fungal strain had a better efficacy than the wild type to defend plants against the bacterial pathogen and aphid attacks. Contrary to ald1, fmo1 plants could not be boosted to resist bacterial infection after treatments. After fungal inoculations, the phytoalexins camalexin and aliphatic glucosinolate were selectively increased in Arabidopsis via both PIP-dependent and -independent ways. This study unveils the potential mechanism of the fungus-mediated beneficial promotion of plant immunity against biological stresses. The data also highlight the added values of M. robertsii to plants beyond the direct suppression of insect pest populations.


Arabidopsis , Arabidopsis/genetics , Rhizosphere , Phytoalexins , Plants , Plant Immunity , Fungi
5.
Autophagy ; 18(3): 608-623, 2022 03.
Article En | MEDLINE | ID: mdl-34130590

The requirement of macroautophagic/autophagic machinery for filamentous fungal development and pathogenicity has been recognized, but the underlying effects and mechanisms remain elusive. The insect pathogenic fungus Metarhizium robertsii infects hosts by cuticular penetration through the formation of the infection structure appressoria. Here, we show that autophagic fluxes were highly activated during the appressorial formation of M. robertsii. Genome-wide deletion of the autophagy-related genes and insect bioassays identified 10 of 23 encoded MrATG genes with requirements for topical fungal infection of insect hosts. Besides the defect in forming appressoria on insects (two null mutants), these virulence-reduced mutants were largely impaired in penetrating cellophane membrane and insect cuticles, suggesting their failures in generating proper appressorium turgor. We found that the conidial storage of lipid droplets (LDs) had no obvious difference between strains, but autophagic LD degradation was impaired in different mutants. After induction of cell autophagy by nitrogen starvation, we found that LD entry into vacuoles was unaffected in the selected mutant cells with potential failures in forming autophagosomes. The finding therefore reveals a microlipophagy machinery employed in this fungus and that the direct engulfment of LDs occurs without inhibition by the downstream defective lipolysis. Our data first unveil the activation and contribution of microlipophagy to fungal infection biology. The obtained technique may benefit future detection of microlipophagy in different organisms by examining vacuolar or lysosomal engulfment of LDs in core autophagic gene deletion mutants.Abbreviations: AIM: Atg8-family interacting motif; ATG: autophagy-related; CM: complete medium; CMAC: 7-amino-4-chloromethylcoumarin; DTT: dithiothreitol; ER: endoplasmic reticulum; GFP: green fluorescent protein; LD, lipid droplet; MM: minimum medium; MM-N: minimum medium without nitrogen source; PDA: potato dextrose agar; PMSF: phenylmethylsulfonyl fluoride; RFP: red fluorescent protein; SDB: Sabouraud dextrose broth; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TAG: triacylglycerol; TEM: transmission electron microscopy; WT, wild type.


Autophagy , Metarhizium , Animals , Fungal Proteins/metabolism , Glucose/metabolism , Insecta/metabolism , Metarhizium/genetics , Nitrogen/metabolism , Spores, Fungal/metabolism
6.
Front Microbiol ; 12: 698436, 2021.
Article En | MEDLINE | ID: mdl-34239513

Cordyceps militaris is an entomopathogenic fungus producing a variety of bioactive compounds. To meet the huge demand for medicinal and edible products, industrialized fermentation of mycelia and cultivation of stromata have been widely developed in China. The content of bioactive metabolites of C. militaris, such as cordycepin, is higher when cultivated on silkworm pupae than on rice or in broth. However, compared with other cultivation methods, C. militaris grows more slowly and accumulates less biomass. The hypoxic environment in pupa hemocoel is one of environmental factor which is not existed in other cultivation methods. It is suggested that hypoxia plays an important role on the growth and the synthesis of bioactive compounds in C. militaris. Here, we demonstrated that the distinct effects on the growth and synthesis of bioactive compounds employing different strategies of improving hypoxia adaption. The introduction of Vitreoscilla hemoglobin enhanced growth, biomass accumulation, and crude polysaccharides content of C. militaris. However, cordycepin production was decreased to 9-15% of the control group. Meanwhile, the yield of adenosine was increased significantly. Nonetheless, when the predicted bHLH transcription factor of sterol regulatory element binding proteins (SREBPs) was overexpressed in C. militaris to improve the hypoxia adaption of fungal cells, cordycepin content was significantly increased more than two-fold. These findings reveal the role of SREBPs on growth and bioactive compounds synthesis. And it also provides a scientific basis for rationally engineering strains and optimization strategies of air supply in cultivation and fermentation.

7.
PLoS Pathog ; 17(6): e1009656, 2021 06.
Article En | MEDLINE | ID: mdl-34125872

The exopolysaccharide galactosaminogalactan (GAG) has been well characterized in Aspergilli, especially the human pathogen Aspergillus fumigatus. It has been found that a five-gene cluster is responsible for GAG biosynthesis in Aspergilli to mediate fungal adherence, biofilm formation, immunosuppression or induction of host immune defences. Herein, we report the presence of the conserved GAG biosynthetic gene cluster in the insect pathogenic fungus Metarhizium robertsii to mediate either similar or unique biological functions. Deletion of the gene cluster disabled fungal ability to produce GAG on germ tubes, mycelia and appressoria. Relative to the wild type strain, null mutant was impaired in topical infection but not injection of insect hosts. We found that GAG production by Metarhizium is partially acetylated and could mediate fungal adherence to hydrophobic insect cuticles, biofilm formation, and penetration of insect cuticles. In particular, it was first confirmed that this exopolymer is responsible for the formation of appressorium mucilage, the essential extracellular matrix formed along with the infection structure differentiation to mediate cell attachment and expression of cuticle degrading enzymes. In contrast to its production during A. fumigatus invasive growth, GAG is not produced on the Metarhizium cells harvested from insect hemocoels; however, the polymer can glue germ tubes into aggregates to form mycelium pellets in liquid culture. The results of this study unravel the biosynthesis and unique function of GAG in a fungal system apart from the aspergilli species.


Host-Parasite Interactions/physiology , Metarhizium/metabolism , Metarhizium/pathogenicity , Polysaccharides/metabolism , Virulence/physiology , Animals , Drosophila melanogaster/parasitology , Fungal Proteins/metabolism , Moths/parasitology
9.
Environ Microbiol ; 23(2): 810-825, 2021 02.
Article En | MEDLINE | ID: mdl-32691932

The filamentous fungus Beauveria bassiana, an insect fungal pathogen, is widely used for pest biocontrol. Aerial conidia are infectious propagules, and their yield and viability greatly affect the field application of this fungus; however, little is known about the molecular regulatory mechanism of the triggered conidiation. In the present study, we find that the secondary metabolite regulator BbSmr1 is involved in the regulation of asexual conidiation development and stress response in B. bassiana. A deficiency in Bbsmr1 results in a prominent fluffy-like phenotype on solid medium, decreased conidial yield, accelerated conidial germination, as well as increased tolerance to H2 O2 stress and cell wall inhibitors. The deletion of Bbsmr1 also leads to thickened conidial cell walls and changed cell epitopes. Overexpressing either BbbrlA or BbabaA in the ∆Bbsmr1 strain can rescue the phenotypes of conidial development and stress response. BbSmr1 activates BbbrlA transcription by directly binding to the A4GA3 sequence of the BbbrlA promoter. BbBrlA in turn binds to the promoter of Bbsmr1 and negatively regulates the expression of Bbsmr1. These results indicate that BbSmr1 positively regulates conidial development in B. bassiana by activating the central development pathway BrlA-AbaA-WetA and provides insights into the developmental regulatory mechanism of entomopathogenic fungi.


Beauveria/genetics , Cell Wall/metabolism , Gene Expression Regulation, Fungal/genetics , Spores, Fungal/cytology , Spores, Fungal/metabolism , Animals , Biological Control Agents/metabolism , Fungal Proteins/genetics , Hydrogen Peroxide/metabolism , Insecta/microbiology , Promoter Regions, Genetic/genetics , Reproduction, Asexual/physiology , Transcription, Genetic/genetics
10.
Sci China Life Sci ; 64(3): 466-477, 2021 03.
Article En | MEDLINE | ID: mdl-32712834

Fungal G-protein coupled receptors (GPCRs) play essential roles in sensing environmental cues including host signals. The study of GPCR in mediating fungus-insect interactions is still limited. Here we report the evolution of GPCR genes encoded in the entomopathogenic Metarhizium species and found the expansion of Pth11-like GPCRs in the generalist species with a wide host range. By deletion of ten candidate genes MrGpr1-MrGpr10 selected from the six obtained subfamilies in the generalist M. robertsii, we found that each of them played a varied level of roles in mediating appressorium formation. In particular, deletion of MrGpr8 resulted in the failure of appressorium formation on different substrates and the loss of virulence during topical infection of insects but not during injection assays when compared with the wild-type (WT) strain. Further analysis revealed that disruption of MrGpr8 substantially impaired the nucleus translocation of the mitogen-activated protein kinase (MAPK) Mero-Fus3 but not the MAPK Mero-Slt2 during appressorium formation. We also found that the defect of AMrGpr8 could not be rescued with the addition of cyclic AMP for appressorium formation. Relative to the WT, differential expression of the selected genes have also been detected in AMrGpr8. The results of this study may benefit the understanding of fungus-interactions mediated by GPCRs.


Gene Expression Regulation, Fungal , Insecta , Metarhizium/genetics , Metarhizium/pathogenicity , Mitogen-Activated Protein Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Virulence/genetics , Animals , Gene Deletion
11.
J Fungi (Basel) ; 6(3)2020 Sep 14.
Article En | MEDLINE | ID: mdl-32937856

The Woronin body (WB) is a peroxisome-derived dense-core vesicle, a self-assembling hexagonal crystal of a single protein Hex1. This organelle is specific to the ascomycete fungi belonging to the Pezizomycotina subphylum by functioning in sealing septal pores in response to mycelium damage and the control of cell heterogeneity. We retrieved all available Hex1-domain containing proteins of different fungi from the GenBank database and found considerable length variations among 460 obtained Hex1 proteins. However, a highly conserved Hex1 domain containing 75 amino acid residues with a specific S/A-R/S-L consensus motif for targeting peroxisome is present at the carboxy-terminus of each protein. A homologous Hex1 gene, named MrHex1, was deleted in the entomopathogenic fungus Metarhizium robertsii. It was found that MrHex1 was responsible for WB formation in M. robertsii and involved in sealing septal pores to maintain cell integrity and heterogeneity. Different assays indicated that, relative to the wild-type (WT) strain, ∆Mrhex1 demonstrated a growth defect on a solid medium and substantial reductions of conidiation, appressorium formation and topical infectivity against insect hosts. However, there was no obvious virulence difference between WT and mutants during injection of insects. We also found that ∆MrHex1 could tolerate different stress conditions like the WT and the gene-rescued mutant of M. robertsii, which is in contrast to the reports of the stress-response defects of the Hex1 null mutants of other fungal species. In addition to revealing the phenotypic/functional alterations of the Hex1 deletion mutants between different pathotype fungi, the results of this study may benefit the understanding of the evolution and WB-control of fungal entomopathogenicity.

12.
J Fungi (Basel) ; 6(3)2020 Aug 13.
Article En | MEDLINE | ID: mdl-32823730

Amid the genomic data explosion, phylogenomic analysis has resolved the tree of life of different organisms, including fungi. Genome-wide clustering has also been conducted based on gene content data that can lighten the issue of the unequal evolutionary rate of genes. In this study, using different fungal species as models, we performed phylogenomic and protein-content (PC)-based clustering analysis. The obtained sequence tree reflects the phylogenetic trajectory of examined fungal species. However, 15 PC-based trees constructed from the Pfam matrices of the whole genomes, four protein families, and ten subcellular locations largely failed to resolve the speciation relationship of cross-phylum fungal species. However, lifestyle and taxonomic associations were more or less evident between closely related fungal species from PC-based trees. Pairwise congruence tests indicated that a varied level of congruent or discordant relationships were observed between sequence- and PC-based trees, and among PC-based trees. It was intriguing to find that a few protein family and subcellular PC-based trees were more topologically similar to the phylogenomic tree than was the whole genome PC-based phylogeny. In particular, a most significant level of congruence was observed between sequence- and cell wall PC-based trees. Cophylogenetic analysis conducted in this study may benefit the prediction of the magnitude of evolutionary conservation, interactive associations, or networking between different family or subcellular proteins.

13.
ACS Chem Biol ; 15(9): 2476-2484, 2020 09 18.
Article En | MEDLINE | ID: mdl-32786262

The indolizidine alkaloid swainsonine (SW) is a deadly mycotoxin to livestock that can be produced by different plant-associated fungi, including the endophytic entomopathogenic fungi Metarhizium species. The SW biosynthetic gene cluster has been identified but the genetic mechanism of SW biosynthesis remains obscure. To unveil the SW biosynthetic pathway, we performed gene deletions in M. robertsii, heterologous expression of a core biosynthetic gene, substrate feedings, mass spectrometry, and bioassay analyses in this study. It was unveiled that SW is produced via a multibranched pathway by the hybrid nonribosomal peptide-polyketide synthase (NRPS-PKS) gene cluster in M. robertsii. The precursor pipecolic acid can be converted from lysine by both the SW biosynthetic cluster and the unclustered genes such as lysine cyclodeaminase. The hybrid NRPS-PKS enzyme produces three intermediates with and without domain skipping. Intriguingly, the biosynthetic process is coupled with the cis to trans nonenzymatic epimerization of C1-OH for both hydroxyl- and dihydroxyl-indolizidine intermediates. We also found that SW production was dispensable for fungal colonization of plants and infection of insect hosts. Functional characterization of the SW biosynthetic genes in this study may benefit the safe use of Metarhizium fungi as insect biocontrol agents and the management of livestock pastures from SW contamination by genetic manipulation of the toxin-producing fungi.


Mycotoxins/biosynthesis , Swainsonine/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Metarhizium/genetics , Metarhizium/metabolism , Multigene Family , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Protein Domains
14.
ISME J ; 14(6): 1422-1434, 2020 06.
Article En | MEDLINE | ID: mdl-32111946

Entomopathogenic fungi are one of the key regulators of insect populations in nature. Some species such as Beauveria bassiana with a wide host range have been developed as promising alternatives to chemical insecticides for the biocontrol of insect pests. However, the long-term persistence of the released strains, the effect on non-target hosts and local fungal populations remains elusive, but they are considerable concerns with respect to environmental safety. Here we report the temporal features of the Beauveria population genomics and evolution over 20 years after releasing exotic strains to control pine caterpillar pests. We found that the isolates within the biocontrol site were mostly of clonal origins. The released strains could persist in the environment for a long time but with low recovery rates. Similar to the reoccurrence of host jumping by local isolates, the infection of non-target insects by the released strains was evident to endemically occur in association with host seasonality. No obvious dilution effect on local population structure was evident by the releases. However, the population was largely replaced by genetically divergent isolates once per decade but evolved with a pattern of balancing selection and towards expansion through adaptation, non-random outcrossing and isolate migration. This study not only unveils the real-time features of entomopathogenic fungal population genomics and evolution but also provides added values to alleviate the concerns of environmental safety regarding the biocontrol application of mycoinsecticides.


Beauveria/genetics , Insecta/microbiology , Pinus/parasitology , Plant Diseases/parasitology , Animals , Beauveria/physiology , Genome, Fungal , Host Specificity , Insecta/physiology , Metagenomics , Pest Control, Biological
15.
Philos Trans R Soc Lond B Biol Sci ; 374(1767): 20180321, 2019 03 04.
Article En | MEDLINE | ID: mdl-30967021

Many prokaryotic and eukaryotic proteins contain domains of unknown function (DUFs). A DUF3129 family of proteins is widely encoded in the genomes of fungal pathogens. A few studies in plant and insect pathogens indicated that the DUF3129 genes are required for fungal penetration of host cuticles with an unclear mechanism. We found that a varied number of DUF3129 proteins is present in different fungal species and the proteins are evolutionarily diverged from each other at the inter- and intra-specific levels. By using the insect pathogenic fungus Metarhizium robertsii as a model, we performed experiments and found that the seven DUF3129 proteins encoded by this fungus are localized to cellular lipid droplets (LDs). Individual deletion of these genes did not affect fungal formation of the infection structure appressoria and the accumulation of LDs in fungal conidia. When compared with the wild-type (WT) strain, insect bioassays revealed that the virulence of most null mutants were significantly impaired during topical infection but not during injection of insects. Carbon starvation and the subsequent Western blot analysis indicated that the LD-specific perilipin protein was completely degraded in the WT cells whereas varied levels of perilipin could be detected in the mutant cells, which signified that depletion of LD content was delayed in mutant cells, and DUF3129 proteins are therefore involved in LD degradation. We also provided biochemical evidence that these DUF3129 genes are transcriptionally regulated by a yeast Ste12-like transcription factor. The findings of this study not only unveil the function of DUF3129 proteins but also better understand the diverse mechanism of fungus-host interactions. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.


Fungal Proteins/genetics , Lipid Droplets/chemistry , Membrane Glycoproteins/genetics , Metarhizium/physiology , Moths/microbiology , Tenebrio/microbiology , Animals , Fungal Proteins/metabolism , Larva/growth & development , Larva/microbiology , Membrane Glycoproteins/metabolism , Metarhizium/genetics , Moths/growth & development
17.
Mol Plant Microbe Interact ; 31(9): 951-961, 2018 09.
Article En | MEDLINE | ID: mdl-29547354

Agrobacterium tumefaciens infects and causes crown galls in dicot plants by transferring T-DNA from the Ti plasmid to the host plant via a type IV secretion system. This process requires appropriate environmental conditions, certain plant secretions, and bacterial regulators. In our previous work, a member of the LysR family of transcriptional regulators (LsrB) in Sinorhizobium meliloti was found to modulate its symbiotic interactions with the host plant alfalfa. However, the function of its homolog in A. tumefaciens remains unclear. In this study, we show that the LsrB protein of A. tumefaciens is required for efficient transformation of host plants. A lsrB deletion mutant of A. tumefaciens exhibits a number of defects, including in succinoglycan production, attachment, and resistance to oxidative stress and iron limitation. RNA-sequencing analysis indicated that 465 genes were significantly differentially expressed (upregulation of 162 genes and downregulation of 303 genes) in the mutant, compared with the wild-type strain, including those involved in succinoglycan production, iron transporter, and detoxification enzymes for oxidative stress. Moreover, expression of the lsrB gene from S. meliloti, Brucella abortus, or A. tumefaciens rescued the defects observed in the S. meliloti or A. tumefaciens lsrB deletion mutant. Our findings suggest that a conserved mechanism of LsrB function exists in symbiotic and pathogenic bacteria of the family Rhizobiaceae.


Agrobacterium tumefaciens/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Medicago sativa/microbiology , Plant Tumors/microbiology , Sinorhizobium meliloti/genetics , Agrobacterium tumefaciens/physiology , Arabidopsis/genetics , Arabidopsis/microbiology , Bacterial Proteins/genetics , Gene Expression , Genes, Reporter , Iron/metabolism , Oxidative Stress , Polysaccharides, Bacterial/metabolism , Sequence Deletion , Symbiosis , Nicotiana/genetics , Nicotiana/microbiology
18.
Appl Environ Microbiol ; 84(3)2018 02 01.
Article En | MEDLINE | ID: mdl-29150514

Glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH), one of the key antioxidants in Sinorhizobium meliloti, is required for the development of alfalfa (Medicago sativa) nitrogen-fixing nodules. Glutathione exists as either reduced glutathione (GSH) or oxidized glutathione (GSSG), and its content is regulated by two pathways in S. meliloti The first pathway is the de novo synthesis of glutathione from its constituent amino acids, namely, Glu, Cys, and Gly, catalyzed by γ-glutamylcysteine synthetase (GshA) and glutathione synthetase (GshB). The second pathway is the recycling of GSSG via glutathione reductase (GR). However, whether the S. meliloti GR functions similarly to GshA and GshB1 during symbiotic interactions with alfalfa remains unknown. In this study, a plasmid insertion mutation of the S. melilotigor gene, which encodes GR, was constructed, and the mutant exhibited delayed alfalfa nodulation, with 75% reduction in nitrogen-fixing capacity. The gor mutant demonstrated increased accumulation of GSSG and a decreased GSH/GSSG ratio in cells. The mutant also showed defective growth in rich broth and minimal broth and was more sensitive to the oxidants H2O2 and sodium nitroprusside. Interestingly, the expression of gshA, gshB1, katA, and katB was induced in the mutant. These findings reveal that the recycling of glutathione is important for S. meliloti to maintain redox homeostasis and to interact symbiotically with alfalfa.IMPORTANCE The antioxidant glutathione is regulated by its synthetase and reductase in cells. In the symbiotic bacterium S. meliloti, the de novo synthesis of glutathione is essential for alfalfa nodulation and nitrogen fixation. In this study, we observed that the recycling of glutathione from GSSG not only was required for redox homeostasis and oxidative stress protection in S. meliloti cells but also contributed to alfalfa nodule development and competition capacity. Our findings demonstrate that the recycling of glutathione plays a key role in nitrogen fixation symbiosis.


Glutathione Reductase/genetics , Glutathione/metabolism , Homeostasis/genetics , Sinorhizobium meliloti/enzymology , Symbiosis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glutathione/biosynthesis , Homeostasis/physiology , Hydrogen Peroxide/metabolism , Medicago sativa/microbiology , Nitrogen/metabolism , Nitrogen Fixation , Oxidants/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Sinorhizobium meliloti/genetics , Symbiosis/physiology
19.
Environ Microbiol ; 19(12): 5130-5145, 2017 Dec.
Article En | MEDLINE | ID: mdl-29124841

The development of legume nitrogen-fixing nodules is regulated by reactive oxygen species (ROS) produced by symbionts. Several regulators from Rhizobium are involved in ROS sensing. In a previous study, we found that Sinorhizobium meliloti LsrB regulates lipopolysaccharide production and is associated with H2 O2 accumulation in alfalfa (Medicago sativa) nodules. However, its underlying regulatory mechanism remains unclear. Here, we report that the cysteine residues in LsrB are required for adaptation to oxidative stress, gene expression, alfalfa nodulation and nitrogen fixation. Moreover, LsrB directly activated the transcription of lrp3 and gshA (encoding γ-glutamylcysteine synthetase, responsible for glutathione synthesis) and this regulation required the cysteine (Cys) residues in the LsrB substrate-binding domain. The Cys residues could sense oxidative stress via the formation of intermolecular disulfide bonds, generating LsrB dimers and LsrB-DNA complexes. Among the Cys residues, C238 is a positive regulatory site for the induction of downstream genes, whereas C146 and C275 play negative roles in the process. The lsrB mutants with Cys-to-Ser substitutions displayed altered phenotypes in respect to their adaptation to oxidative stress, nodulation and nitrogen fixation-related plant growth. Our findings demonstrate that S. meliloti LsrB modulates alfalfa nodule development by directly regulating downstream gene expression via a post-translational strategy.


Cysteine/metabolism , Medicago sativa/metabolism , Oxidative Stress/physiology , Root Nodules, Plant/metabolism , Sinorhizobium meliloti/genetics , Amino Acid Sequence/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Dipeptides , Gene Expression Regulation, Plant/genetics , Glutathione Disulfide/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/metabolism , Symbiosis/genetics , Transcription Factors/genetics
20.
Microbiol Res ; 198: 1-7, 2017 May.
Article En | MEDLINE | ID: mdl-28285657

The two-component system ActS/ActR plays important roles in bacterial adaptation to abiotic stress, including acid tolerance and oxidant resistance. However, the underlying regulatory mechanism is not clear. In this study, we found that the ActS/ActR system is required for adaptation to oxidative stress by regulating the transcription of the genes actR, katB, gshA and gshB1. The actS and actR mutants were sensitive to low pH and oxidants such as H2O2, oxidized glutathione (GSSG) and sodium nitroprusside (SNP). The expression of actR by using a plasmid rescued the defect of SNP sensitivity for all actS and actR mutants. The expression of actS and actR were suppressed by treatment with H2O2. The expression of actS, actR, oxyR, katA and katB was required for ActS and ActR under normal conditions. The induction of katB, gshA and gshB1 depended on ActS and ActR during treatment with H2O2 and SNP. Our findings revealed that the ActS/ActR system is a key redox regulator in S. meliltoi and provides a new cue to understanding Rhizobium-legume symbiosis.


Gene Expression Regulation, Bacterial , Oxidative Stress , Signal Transduction , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Stress, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Gene Expression , Genetic Complementation Test , Hydrogen-Ion Concentration , Oxidants/toxicity , Oxidation-Reduction , Plasmids , Sinorhizobium meliloti/drug effects , Transcription, Genetic
...